当前位置:主页 > 佛山新闻 >

佛山新闻

苏联的科学家正在研发一种不同的装置
  我们对实现受控热核聚变的尝试可追溯到20世纪50年代初。当时,美国、苏联还有英国都在悄悄地进行这项研究。在美国,普林斯顿大学是这项研究的支柱。在那里,物理学家Lyman Spitzer启动了马特洪计划,一群科学家秘密地在一个名为“仿星器”的8字形设备中,试图对聚变进行引发和控制。那时的他们没有电脑,只能依靠笔来进行计算。虽然他们没有解决这个难题,但却最终发展了“能量原理”,这一原理至今仍是测试等离子体稳定性的有效方法。
 
  ○ 左:托卡马克;右:仿星器。| 图片来源:Economist.com○ 左:托卡马克;右:仿星器。| 图片来源:Economist.com
 
  与此同时,苏联的科学家正在研发一种不同的装置,名为“托卡马克”。这台由物理学家Andrei Sakharov和Igor Tamm设计的机器利用强大的磁场,将热等离子体变成甜甜圈的形状。托卡马克能够更好地维持等离子体的高温和稳定,直到今天,大多数聚变研究项目都是依赖于托卡马克的设计。为了实现这一目标,中国、欧盟、印度、日本、韩国、俄罗斯和美国已经联合起来,要共同建立一个世界上最大的托卡马克反应堆,这一计划预计能在2025年建成。不过近年来,科学家对仿星器的热情也再次被点燃,最大规模的一次始于2015年的德国。从两条不同的路径进行探索,或许是实现聚变的最优策略。
 
  此外,来自太阳上层大气产生的超高速太阳风,会将等离子体携带到地球周围,因此等离子体也与地球周围空间里的物理纠缠在一起。幸运的是,地球的磁场能使我们远离这些带电的等离子体粒子以及来自太阳风辐射的伤害;但我们的卫星、航天器和宇航员却都暴露在外。要让它们能在这种充满敌意的环境中生存,还需依赖于我们对等离子体的理解和调节。等离子体的另一个有趣特性是,它们具有支撑磁流波(hydromagnetic wave)的能力。磁流波是沿着磁场线穿过等离子体的凸起,类似于沿吉他弦传播的振动。1942年,瑞典科学家Hannes Alfvén(并最终获诺贝尔奖)首次提出了这种波的存在,但当时的物理界对此持有怀疑态度。后来,Alfvén在芝加哥大学进行了一场演讲,在演讲结束后,著名的物理学家费米(Enrico Fermi)上前与他讨论这个理论,并认可地说道:“这种波当然可能存在!”从那一刻起,科学界的共识就变成了Alfvén绝对是正确的。
 
  当代等离子科学的最大前景之一是受控热核聚变,它指的是当原子合并在一起时释放出强烈但可控的能量爆发,这几乎能源源不断地提供安全、“绿色”的能源,但这并非一件容易的事。在聚变出现在地球上之前,等离子体必须加热到超过1亿摄氏度的温度,这一温度比太阳的核心还要高10倍!但这并不是最复杂的一点,在20世纪90年代,我们就能达到并超过这一温度;更棘手的问题是,热等离子体非常不稳定,且不喜欢待在一个固定的体积内,这就意味着它难以被控制和利用。